Highest vectors of representations (total 6) ; the vectors are over the primal subalgebra. | \(-h_{5}-2h_{4}-h_{3}+h_{1}\) | \(g_{13}\) | \(g_{3}+g_{2}\) | \(g_{10}\) | \(g_{11}\) | \(g_{7}\) |
weight | \(0\) | \(\omega_{1}+\omega_{2}\) | \(2\omega_{3}\) | \(\omega_{1}+2\omega_{3}\) | \(\omega_{2}+2\omega_{3}\) | \(4\omega_{3}\) |
weights rel. to Cartan of (centralizer+semisimple s.a.). | \(0\) | \(\omega_{1}+\omega_{2}\) | \(2\omega_{3}\) | \(\omega_{1}+2\omega_{3}+4\psi\) | \(\omega_{2}+2\omega_{3}-4\psi\) | \(4\omega_{3}\) |
Isotypical components + highest weight | \(\displaystyle V_{0} \) → (0, 0, 0, 0) | \(\displaystyle V_{\omega_{1}+\omega_{2}} \) → (1, 1, 0, 0) | \(\displaystyle V_{2\omega_{3}} \) → (0, 0, 2, 0) | \(\displaystyle V_{\omega_{1}+2\omega_{3}+4\psi} \) → (1, 0, 2, 4) | \(\displaystyle V_{\omega_{2}+2\omega_{3}-4\psi} \) → (0, 1, 2, -4) | \(\displaystyle V_{4\omega_{3}} \) → (0, 0, 4, 0) | |||||||||||||||||||||||||||||||||||||||||
Module label | \(W_{1}\) | \(W_{2}\) | \(W_{3}\) | \(W_{4}\) | \(W_{5}\) | \(W_{6}\) | |||||||||||||||||||||||||||||||||||||||||
Module elements (weight vectors). In blue - corresp. F element. In red -corresp. H element. | Cartan of centralizer component.
| Semisimple subalgebra component.
| Semisimple subalgebra component.
|
|
|
| |||||||||||||||||||||||||||||||||||||||||
Weights of elements in fundamental coords w.r.t. Cartan of subalgebra in same order as above | \(0\) | \(\omega_{1}+\omega_{2}\) \(-\omega_{1}+2\omega_{2}\) \(2\omega_{1}-\omega_{2}\) \(0\) \(0\) \(-2\omega_{1}+\omega_{2}\) \(\omega_{1}-2\omega_{2}\) \(-\omega_{1}-\omega_{2}\) | \(2\omega_{3}\) \(0\) \(-2\omega_{3}\) | \(\omega_{1}+2\omega_{3}\) \(-\omega_{1}+\omega_{2}+2\omega_{3}\) \(\omega_{1}\) \(-\omega_{2}+2\omega_{3}\) \(-\omega_{1}+\omega_{2}\) \(\omega_{1}-2\omega_{3}\) \(-\omega_{2}\) \(-\omega_{1}+\omega_{2}-2\omega_{3}\) \(-\omega_{2}-2\omega_{3}\) | \(\omega_{2}+2\omega_{3}\) \(\omega_{1}-\omega_{2}+2\omega_{3}\) \(\omega_{2}\) \(-\omega_{1}+2\omega_{3}\) \(\omega_{1}-\omega_{2}\) \(\omega_{2}-2\omega_{3}\) \(-\omega_{1}\) \(\omega_{1}-\omega_{2}-2\omega_{3}\) \(-\omega_{1}-2\omega_{3}\) | \(4\omega_{3}\) \(2\omega_{3}\) \(0\) \(-2\omega_{3}\) \(-4\omega_{3}\) | |||||||||||||||||||||||||||||||||||||||||
Weights of elements in (fundamental coords w.r.t. Cartan of subalgebra) + Cartan centralizer | \(0\) | \(\omega_{1}+\omega_{2}\) \(-\omega_{1}+2\omega_{2}\) \(2\omega_{1}-\omega_{2}\) \(0\) \(0\) \(-2\omega_{1}+\omega_{2}\) \(\omega_{1}-2\omega_{2}\) \(-\omega_{1}-\omega_{2}\) | \(2\omega_{3}\) \(0\) \(-2\omega_{3}\) | \(\omega_{1}+2\omega_{3}+4\psi\) \(-\omega_{1}+\omega_{2}+2\omega_{3}+4\psi\) \(\omega_{1}+4\psi\) \(-\omega_{2}+2\omega_{3}+4\psi\) \(-\omega_{1}+\omega_{2}+4\psi\) \(\omega_{1}-2\omega_{3}+4\psi\) \(-\omega_{2}+4\psi\) \(-\omega_{1}+\omega_{2}-2\omega_{3}+4\psi\) \(-\omega_{2}-2\omega_{3}+4\psi\) | \(\omega_{2}+2\omega_{3}-4\psi\) \(\omega_{1}-\omega_{2}+2\omega_{3}-4\psi\) \(\omega_{2}-4\psi\) \(-\omega_{1}+2\omega_{3}-4\psi\) \(\omega_{1}-\omega_{2}-4\psi\) \(\omega_{2}-2\omega_{3}-4\psi\) \(-\omega_{1}-4\psi\) \(\omega_{1}-\omega_{2}-2\omega_{3}-4\psi\) \(-\omega_{1}-2\omega_{3}-4\psi\) | \(4\omega_{3}\) \(2\omega_{3}\) \(0\) \(-2\omega_{3}\) \(-4\omega_{3}\) | |||||||||||||||||||||||||||||||||||||||||
Single module character over Cartan of s.a.+ Cartan of centralizer of s.a. | \(\displaystyle M_{0}\) | \(\displaystyle M_{\omega_{1}+\omega_{2}}\oplus M_{-\omega_{1}+2\omega_{2}}\oplus M_{2\omega_{1}-\omega_{2}}\oplus 2M_{0}\oplus M_{-2\omega_{1}+\omega_{2}} \oplus M_{\omega_{1}-2\omega_{2}}\oplus M_{-\omega_{1}-\omega_{2}}\) | \(\displaystyle M_{2\omega_{3}}\oplus M_{0}\oplus M_{-2\omega_{3}}\) | \(\displaystyle M_{\omega_{1}+2\omega_{3}+4\psi}\oplus M_{-\omega_{1}+\omega_{2}+2\omega_{3}+4\psi}\oplus M_{-\omega_{2}+2\omega_{3}+4\psi} \oplus M_{\omega_{1}+4\psi}\oplus M_{-\omega_{1}+\omega_{2}+4\psi}\oplus M_{-\omega_{2}+4\psi}\oplus M_{\omega_{1}-2\omega_{3}+4\psi} \oplus M_{-\omega_{1}+\omega_{2}-2\omega_{3}+4\psi}\oplus M_{-\omega_{2}-2\omega_{3}+4\psi}\) | \(\displaystyle M_{\omega_{2}+2\omega_{3}-4\psi}\oplus M_{\omega_{1}-\omega_{2}+2\omega_{3}-4\psi}\oplus M_{-\omega_{1}+2\omega_{3}-4\psi} \oplus M_{\omega_{2}-4\psi}\oplus M_{\omega_{1}-\omega_{2}-4\psi}\oplus M_{-\omega_{1}-4\psi}\oplus M_{\omega_{2}-2\omega_{3}-4\psi} \oplus M_{\omega_{1}-\omega_{2}-2\omega_{3}-4\psi}\oplus M_{-\omega_{1}-2\omega_{3}-4\psi}\) | \(\displaystyle M_{4\omega_{3}}\oplus M_{2\omega_{3}}\oplus M_{0}\oplus M_{-2\omega_{3}}\oplus M_{-4\omega_{3}}\) | |||||||||||||||||||||||||||||||||||||||||
Isotypic character | \(\displaystyle M_{0}\) | \(\displaystyle M_{\omega_{1}+\omega_{2}}\oplus M_{-\omega_{1}+2\omega_{2}}\oplus M_{2\omega_{1}-\omega_{2}}\oplus 2M_{0}\oplus M_{-2\omega_{1}+\omega_{2}} \oplus M_{\omega_{1}-2\omega_{2}}\oplus M_{-\omega_{1}-\omega_{2}}\) | \(\displaystyle M_{2\omega_{3}}\oplus M_{0}\oplus M_{-2\omega_{3}}\) | \(\displaystyle M_{\omega_{1}+2\omega_{3}+4\psi}\oplus M_{-\omega_{1}+\omega_{2}+2\omega_{3}+4\psi}\oplus M_{-\omega_{2}+2\omega_{3}+4\psi} \oplus M_{\omega_{1}+4\psi}\oplus M_{-\omega_{1}+\omega_{2}+4\psi}\oplus M_{-\omega_{2}+4\psi}\oplus M_{\omega_{1}-2\omega_{3}+4\psi} \oplus M_{-\omega_{1}+\omega_{2}-2\omega_{3}+4\psi}\oplus M_{-\omega_{2}-2\omega_{3}+4\psi}\) | \(\displaystyle M_{\omega_{2}+2\omega_{3}-4\psi}\oplus M_{\omega_{1}-\omega_{2}+2\omega_{3}-4\psi}\oplus M_{-\omega_{1}+2\omega_{3}-4\psi} \oplus M_{\omega_{2}-4\psi}\oplus M_{\omega_{1}-\omega_{2}-4\psi}\oplus M_{-\omega_{1}-4\psi}\oplus M_{\omega_{2}-2\omega_{3}-4\psi} \oplus M_{\omega_{1}-\omega_{2}-2\omega_{3}-4\psi}\oplus M_{-\omega_{1}-2\omega_{3}-4\psi}\) | \(\displaystyle M_{4\omega_{3}}\oplus M_{2\omega_{3}}\oplus M_{0}\oplus M_{-2\omega_{3}}\oplus M_{-4\omega_{3}}\) |